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Spatial and temporal analysis of natural hazard mortality in
Nepal
Sanam K. Aksha a, Luke Juran b and Lynn M. Resler a

aDepartment of Geography, Virginia Tech, Blacksburg, VA, USA; bDepartment of Geography and Virginia
Water Resources Research Center, Virginia Tech, Blacksburg, VA, USA

ABSTRACT
The impacts of natural hazards are typically measured in terms of
loss of human lives and economic damage, and recent studies
demonstrate that deaths attributed to natural hazards have
increased. Using the publicly available DesInventar database, we
examined spatial and temporal patterns of natural hazard
mortality from 1971 to 2011 at the district and village levels of
Nepal and identified natural hazards that contributed most to
mortality. Spatial clusters of mortality at the district and village
levels were detected using local and global spatial autocorrelation
measures (Moran’s I). Landslides (41.91%) and floods (32.52%)
accounted for approximately three quarters of natural hazard
mortalities over the study period. A Global Moran’s I test positively
confirmed clustering at both the district (0.199, p < .001) and
village (0.256, p < .001) levels, whereas a Local Moran’s I test
further detected clustering in the central and terai regions, where
dynamic geologic and geomorphic processes combined with
human-environment interaction constitute major risk factors. A
better understanding of multihazard mortality patterns across
geographic landscapes and time has the potential to aid policy
makers, planners, and local officers to more efficiently allocate
scarce capital and human resources to reduce mortality.
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1. Introduction

A common approach to understanding the impacts of natural disasters is the linear-
temporal approach, in which the impacts of disasters are measured simply in terms of
loss of human lives or economic damages over specified periods of time. Recent
studies adopting this method have demonstrated that loss of both life and property
from natural disasters are increasing (CRED, 2015; Huggel et al., 2015; Paul, 2011). For
example, globally, the human toll from natural disasters averaged more than 99,700
deaths per year from 2004 to 2013 compared to only 68,000 per annum over the full
20-year period (1994–2013) (CRED, 2015). Further, the annual economic cost of natural
disasters was estimated at $67 billion USD between 1994 and 2003 (Guha-Sapir,
Hargitt, & Hoyois, 2004), a several fold increase since the 1950s (De Haen & Hemrich,
2007). Though the linear-temporal approach provides insight on disaster losses over
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time, such analyses should be paired with spatially explicit analyses in order to provide
information on not only how impacts of disasters have changed over time, but also where
those impacts have occurred and empirical comparisons of such impacts.

Trends in disaster losses are partly a function of spatial processes, including local and
regional land use decision-making, population expansion (often in vulnerable locations
such as fault lines, floodplains, and coastal areas), and the intensification and shifting of
human-environment interactions. Increases in disaster losses cannot be equated solely
to a simple increase in natural hazards, per se, but rather they reflect the cumulative con-
sequence of a series of human decisions and actions made over time in a particular place
or region (Comfort et al., 1999; Juran & Trivedi, 2015). Thus, incorporating the nuances of
place and spatial processes into disaster loss research may aid the process of identifying
disaster loss ‘inequities’ in, for example, underdeveloped countries confronting issues of
poverty, government capacity, access to resources and technology, and overstressed infra-
structure (Borden & Cutter, 2008; Kahn, 2005).

This research investigates spatial and temporal patterns of natural disaster mortality
using Nepal as a case study by posing two specific research questions. First, what are
the spatiotemporal patterns of natural hazard mortality in Nepal? Second, which natural
hazard contributes most to mortality in Nepal? Our specific objectives are to identify: (1)
characteristics of spatial and temporal patterns of natural hazards at the district and vil-
lages levels; and (2) those natural hazard types contributing most to mortality, after con-
trolling for population.

A better understanding of spatial characteristics of human losses to natural disasters is
crucial for implementing effective, evidence-based policies, and programs for vulnerability
reduction. Thus, this study examines place-based vulnerability across time, which we oper-
ationalize here as the analysis of a specific geographic location’s vulnerability compared to
the level of vulnerability of other geographic locations. Analyses that identify vulnerable
locations and clusters of vulnerable populations can aid in disaster preparedness and miti-
gation. While socioeconomic and physical attributes may indicate vulnerability, they
jointly coalesce in explicit spatial locations and thus represent a composite of complex
interactions among social, natural, and engineered environments in a particular place.
Using this lens, spatial analyses can assist local managers to efficiently allocate scarce
financial, human, and technical resources to address vulnerability in coupled human-
environment systems. The study of mortality has potential to inform all stages of the dis-
aster cycle, and mortality mapping supports the exploration of spatial patterns, tests for
statistically significant spatial clusters, and identification of temporal and multi-scalar
dynamics (Borden & Cutter, 2008; Combs, Quenemoen, Parrish, & Davis, 1999; Kahn,
2005; Petal, 2011). Thus, mortality mapping represents a valuable tool for refining mitiga-
tion efforts and reducing human and economic losses.

Research on natural hazard mortality often focuses on developed countries (where data
are typically disaggregated and of higher quality) (Barredo, 2010; Coates, 1999; Jonkman,
Maaskant, Boyd, & Levitan, 2009); the global scale (using publicly available national level
data) (Guha-Sapir et al., 2004; Jonkman, 2005; Kahn, 2005; Peduzzi, Dao, & Herold, 2005);
or the national scale of lesser developed countries (the level of aggregation at which
data in underdeveloped countries are typically available) (Huggel et al., 2015; Pradhan
et al., 2007). Thus, the biggest hindrance to conducting spatial-analytical research on
the geography of hazard deaths – particularly in Nepal and other underdeveloped
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countries – is the availability of appropriate data. In order to explore disaster mortality in a
meaningful way, a large data repository that houses information on a variety of hazard
types at a resolution fine enough to detect spatial patterns is required. However, there
exists a disproportionately smaller number of high quality repositories with georeferenced
data in the lesser developed world (Gall, Borden, & Cutter, 2009; Huggel et al., 2015). An
extensive review of the literature was unable to identify a comprehensive accounting of
georeferenced natural hazard deaths for Nepal, let alone one that is complemented
with temporal analyses. To address this gap, we manually georeferenced and spatially ana-
lyzed a mortality dataset for Nepal (i.e. the DesInventar database) that was recently made
available in 2003.

2. Study area and methods

2.1. Study area

Nepal is located in the central Himalayan region, stretching over 900 km east to west
across some of the highest peaks of the range (Figure 1). Elevation in Nepal ranges
from 59 masl to 8848 masl at the summit of Mount Everest, the highest peak in the
world. Based on altitudinal variation, Nepal is divided into five major physiographic

Figure 1. Physical and political map of Nepal.
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regions. The terai is located along the northern edge of the Indo-Gangetic plain. The terai
extends 30–40 km north to south with elevation ranging from 59 to 300 masl; it is gener-
ally flat and predominantly composed of alluvial plains. The Siwalik, commonly known as
the Churia hills, ranges 300 to 1000 masl and rises abruptly from the terai. The Siwalik ends
with the beginning of the mid-hills and is characterized by low terraces and alluvial fans
with steep topography. The mid-hills range 1000–3000 masl and represent the first barrier
to monsoon winds that produce heavy precipitation on its southern flanks due to oro-
graphic effects. The mid-mountain region, north of the mid-hills, ranges 3000–5000
masl and exhibits river valleys, tectonic basins, and a cool, temperate climate. Finally,
the Himalaya region ranges 5000 to over 8000 masl and is mostly occupied by glaciers,
rocky slopes, and colluvial deposits. Table 1 provides a snapshot of vulnerable regions
of the country by hazard types.

Nepal, a lesser developed country that recently emerged from a decade-long civil war,
is currently redrafting its constitution, establishing a new governance structure, and tran-
sitioning from a purely centralized to more decentralized state. These disruptions have
hindered the state’s ability to enact a comprehensive and proactive disaster management
plan. For administrative purposes (e.g. governance, taxation, and resource allocation),
Nepal is divided into several jurisdictional units: development regions (5); zones (14); dis-
tricts (75); village development committees (3833); and municipalities (130) (Central
Bureau of Statistics, 2014). Some of these political units serve as scales of spatial analysis
in this paper.

Nepal is an ideal location for a study addressing spatiotemporal patterns of hazard mor-
tality given its mountainous terrain and exposure to many hazard types. Dynamic geo-
morphic slope processes underlain by a complex and active geology characterize the
country. Furthermore, densely concentrated populations, seasonal monsoon rains, and
the steep, unstable slopes of a geologically young mountain range situate Nepal one of
the most disaster-prone countries in the world. Thus, owing to topographical variation,
active geological processes, and climatic stressors (e.g. monsoons and climate change),
Nepal is at risk to a multitude of natural hazards, including earthquakes, landslides,
debris flows, and floods (see Table 1). Poor populations residing on marginal urban
lands, at the bottom of river valleys, and in remote mountain villages are often the
hardest hit and thus suffer disproportionally (Osti, Tanaka, & Tokioka, 2008). While a

Table 1. Natural hazard vulnerability and mortality in Nepal, 1971–2011.
Hazard type Vulnerable areas Total mortality* Percent total mortality*

Landslide Mid-mountain, mid-hills, Siwalik, and valleys 3302 41.91
Flood Terai, mid-hills, and valleys 2562 32.52
Thunderstorm Entire country 913 11.59
Cold wave Mid-mountain and mid-hills 542 6.88
Strong wind Mostly Terai regions 143 1.82
Avalanche Mid-mountain and Himalaya 80 1.01
Snowstorm Mid-mountain and Himalaya 69 0.88
Forest fire Mid-hills and terai (forest belt at foot of Siwalik) 61 0.77
Earthquake Entire country 50 0.63
Rain Mid-hills 47 0.60
Hailstorm Mid-hills 40 0.51
Storm Mid-hills 39 0.50
Heat wave Terai 30 0.38

*Source: DesInventar Database.
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variety of geological, meteorological, and ecological processes coalesce in space and time
to generate hazards in Nepal, demographic factors such as population growth and density,
land use, poverty and underdevelopment, inadequate disaster planning, and scarce miti-
gation resources serve to further aggravate the context.

Little research has been conducted to examine deaths across hazard type in Nepal
(Aryal, 2012; Petley et al., 2007), and there especially exists a paucity of research on
spatiotemporal dimensions of hazard mortality in Nepal. Natural hazards have resulted
in massive loss of life and significant impacts on socioeconomic development. The fre-
quency and magnitude of natural disasters, number of fatalities, extent of damage, and
spatiotemporal dynamics (i.e. distribution across space and time) are essential for
understanding the vulnerability calculus in an underdeveloped, hazard-prone country
such as Nepal.

A recent report ranks Nepal seventh worldwide in mortality as a result of floods, land-
slides, and debris avalanches combined, and eighth in flood-related deaths alone from
1988 to 2007 (Government of Nepal, 2009). In fact, Nepal has a higher average annual
death rate per million people than neighboring India, a country that also struggles with
issues of vulnerability and multihazard risk (Upreti, 2010). Disaster types, vulnerable
regions, and mortality per disaster type in Nepal from 1971 to 2011 are presented in
Table 1. Together, landslides and floods contribute close to three-fourths of total
human losses, with thunderstorms, cold waves, strong winds, avalanches, snowstorms,
forest fires, and earthquakes comprising most of the remaining roughly one-fourth of
deaths. While often extreme in terms of mortalities per event, and unlike floods and land-
slides, these latter disasters are more episodic and do not occur every year. However, their
magnitude can propel losses dramatically, especially when analyzing mortality over a short
period of time or in only one place or region. For example, Nepal has experienced eight
major earthquakes over the past century. In 1934, the Bihar-Nepal earthquake of 8.1 mag-
nitude claimed 8519 lives (more than half were in Kathmandu Valley) and damaged over
200,000 buildings (about 55,000 in Kathmandu Valley). In 1980, the Chainpur earthquake
(6.5 magnitude) claimed 103 lives and destroyed over 25,000 buildings, and the 1988
Udayapur earthquake (6.5 magnitude) killed 721 and damaged over 66,000 buildings
(Dahal & Bhandary, 2013). More recently, the Gorkha earthquake (7.8 magnitude) of 25
April 2015 claimed approximately 9000 lives, injured approximately 22,000, destroyed
approximately one million buildings, and damaged electricity, water, and other public uti-
lities, and caused more than $7 billion USD in economic losses. Nepal is currently in the
midst of recovering from this massive disaster.

2.2. Data and methods

Mortality data for Nepal were obtained from the DesInventar Disaster Inventory Manage-
ment System database, a database developed by The Network for Social Studies on Dis-
aster Prevention in Latin America (LA RED). As suggested by the name, the database
originated for Latin America in the mid-1990s due to a lack of standardized data on the
occurrence of small- and medium-scale disasters. Thus, a group of researchers from differ-
ent institutions linked to LA RED developed a conceptual typology for inventorying disas-
ter events across nine Latin American countries based on existing newspaper articles,
government data, and reports. In collaboration with United Nations agencies and
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several national governments, the database was expanded to more than 35 countries in
Africa and Asia, Nepal being one.

At the global level, there exist only a few disaster databases that are publicly available
and consistently updated. Of these, DesInventar and EM-DAT represent two databases that
have been used extensively; however, they differ markedly as a function of resolution, cri-
teria used to denote a disaster, and number of variables stored for each disaster (Velas-
quez, Cardona, Mora, et al., 2014). EM-DAT has stricter criteria to be classified as a
disaster. For example, an event must satisfy at least one of the following criteria in
order to qualify as a disaster: 10 or more people reported killed; 100 or more people
affected; declaration of a state of emergency; or an official call for international assistance
(Huggel et al., 2015). The DesInventar database, on the other hand, includes these rela-
tively large disasters as well as smaller disasters that kill or injure fewer people, and
such events are also recorded at the local level (e.g. municipality and village) (Marulanda,
Cardona, & Barbat, 2010). Thus, DesInventar is suitable for this study in that it is more com-
prehensive and that the events can be geocoded at a finer spatial scale.

DesInventar is a computer-based information management system that houses an
inventory of large and small disaster occurrences. The database has been improved
both methodologically and data-wise since its establishment in 1993. Several studies
have used the database to study disaster losses, for example, in Colombia (Marulanda
et al., 2010), Pacific Island countries (Noy, 2016), and Peru (Huggel et al., 2015). Moreover,
Velasquez, Cardona, Carreno, and Barbat (2014) performed a retrospective assessment of
risk to natural hazards in 23 countries and contend that DesInventar is more robust com-
pared to EM-DAT because it includes a greater number of variables.

The DesInventar database was expanded to Nepal in 2003 and currently includes
natural disaster and mortality data from 1971 to 2011 for a total of 30 hazard classifi-
cations. It was constructed by systematically reviewing data published in two leading
newspapers of the country, Gorkhapatra and Kantipur. DesInventar also incorporates
data from the disaster review series published by the Ministry of Home Affairs as well as
annual reports published by the Department of Water Induced Disaster Prevention, both
from the Government of Nepal. For each disaster, DesInventar records the type, location
(at local, regional, and national level), number of fatalities, and damage to infrastructure
(United Nations International Strategy for Disaster Risk Reduction, 2009). The National
Society for Earthquake Technology-Nepal (NSET), a well-known nongovernmental organ-
ization based in Kathmandu, consistently updates the database. In addition to disaggrega-
tion across 30 hazard types, the spatial-analytical objective of this paper is made possible
by hazard events and mortalities having been recorded by village name. Thus, the DesIn-
ventar database was ultimately selected to undertake this study given its reliable and
robust recording of disaster events, high resolution of events at the local level (which facili-
tate geocoding), and based on the literature (see Velasquez, Cardona, Carreno, et al., 2014).

From the DesInventar database, we extracted all data for Nepal and segregated into a
list only those natural hazard events that caused mortality during the study period (1971–
2011). The resulting list contains 13 natural hazard types: avalanche, cold wave, earth-
quake, flood, forest fire, hailstorm, heat wave, landslide, rain, snowstorm, storm, strong
wind, and thunderstorm. In total, 2839 individual events resulted in at least one death,
and these close to 3000 events across 13 hazard types became the basis for this study.
To analyze events spatially, each event was manually provided a district and village
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code to join them to an ArcGIS environment. The statistical software package JMP Pro
Version 11 was used to pool and summarize data into the following categories: Event,
Year, District, Village, and Mortality.

The most common measure used to characterize mortality is crude death rate, which
calculates a generalized death rate for a population by dividing number of fatalities by
the corresponding midyear population (McGehee, 2004). Crude rates indicate where
number of deaths are highest. However, a major limitation is that crude death rates do
not account for population concentrations and differences in population structure
among spatial units (Wilson & Buescher, 2002), which means that visualizations and ana-
lyses based on crude rates alone may indicate ‘false’ clusters of mortality. Therefore,
beyond the basic measure of crude death rates, we also control for population concen-
trations and use measures of spatial autocorrelation to identify ‘true’ clusters of mortality.

Spatial autocorrelation techniques can be employed to analyze spatial patterns of mor-
tality. In simple terms, spatial autocorrelation explores relationships among nearby spatial
units whereby nearby areas have stronger relationships and similarities than relatively
distant areas, resulting in spatial patterns of attributes. This concept has been applied in
a wide range of fields to assess spatial diffusion of technologies and contagious diseases,
to test and calibrate models, and of course to identify spatial clusters, outliers, and relation-
ships (Getis, 2010). Spatial autocorrelation includes two families: global and local. Global
measures of spatial autocorrelation summarize the extent to which neighboring areas
(e.g. districts and villages) are similar in terms of a variable (e.g. mortality), while local
measures detect pockets of spatial association (e.g. clusters of mortality) (Grubesic, Wei,
& Murray, 2014).

Moran’s I, a well-known test for spatial autocorrelation, assumes that the measure of
similarity between values at two locations is a product of the deviation between the
value at each location and the estimate of the global mean (Aldstadt, 2010). As a
method of global statistics, Moran’s I values fall between –1.0 and +1.0, and they indicate
both the existence (positive or negative) and degree (p value) of spatial autocorrelation.
Positive spatial autocorrelation occurs when values of neighboring features are either
larger or smaller than the mean. Similarly, when values are both smaller and larger than
the mean, the cross-product is negative – that is, negative spatial autocorrelation
occurs. Positive spatial autocorrelation in a dataset means that like values tend to
cluster spatially, whereas negative spatial autocorrelation means that high values repel
high values and tend to gather near low values, which means that like values do not
cluster in space. The Global Moran’s I tool in ArcGIS 10.3 was used to compute a single
summary value, p-value, and z-score to evaluate the significance of spatial patterns of mor-
tality and to assess whether patterns had an average tendency to cluster in space. Neigh-
bors were designated based on the ‘contiguity edges only’ function, which analyzes
neighboring polygon features that share a boundary or overlap that influence compu-
tations for the target polygon feature. A limitation of global tests is that they cannot ident-
ify the specific location of detected autocorrelation (Aldstadt, 2010; Anselin, 1995). Hence,
we also deployed Local Moran’s I to examine sub-regions within the data structure.

Local Moran’s I deconstructs global statistics into their local components for the
purpose of identifying influential observations and outliers. It detects spatial clusters of
both high and low values as well as spatial outliers, which renders the test useful for ana-
lyzing spatial variations of clusters that are not apparent in the global measure. The Cluster
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and Outlier Analysis, or Anselin Local Moran’s I, tool in ArcGIS 10.3 was used to calculate a
Local Moran’s I value, z-score, pseudo p-value, and code representing the cluster type for
each statistically significant feature. The output distinguishes statistically significant clus-
ters of high values (i.e. disproportionately high mortalities); low values (i.e. disproportio-
nately low mortalities); outliers in which a high value is surrounded primarily by low
values (high-low); and outliers in which a low value is surrounded primarily by high
values (low-high). High-high clusters denote that high numbers of fatalities occurred in
nearby spatial units, while low-low clusters denote that low numbers of fatalities occurred
in nearby spatial units.

3. Results

3.1. Spatial distribution of natural hazard mortality

Natural hazard mortality was mapped to illustrate its geographic distribution. First, crude
death rates were mapped at the village level (Figure 2). The crude rates show higher mor-
tality in the mid-mountain and Himalaya regions where landslides, thunderstorms, cold
waves, snowstorms, and avalanches are common. However, these areas are inhabited
by smaller populations compared to the southern part of the country, or the terai.
Crude rates report deaths per unit population across the country, but they fail to
control for population and do not necessarily (let alone statistically) report true clusters.
Thus, mortality data were adjusted to control for population at both the district and
village scales and a Global Moran’s I test was performed to determine whether any stat-
istically significant spatial clustering or dispersion exist. The test confirmed positive

Figure 2. Crude death rate (CDR) from natural hazards at the village level, 1971–2011.
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spatial autocorrelation at both the district (0.199, p < .001) and village level (0.256,
p < .001). While the Global Moran’s I test confirmed that natural hazard mortalities are
clustered in Nepal, it does not identify the specific locations of the clusters.

3.2. Cluster analyses

The geographic identification of clusters must be calculated through local spatial statistics
(as opposed to simple visual interpretation), because sizes, shapes, and patterns harbor
the potential for spurious rate variations and because polygons can create the illusion
of clusters that may not be statistically significant (Borden & Cutter, 2008). Thus, a Local
Moran’s I test was employed to identify significant spatial clusters (95% confidence inter-
val) of natural hazard mortality at the district (Figure 3(A)) and village level (Figure 3(B)).
District level results indicate that natural hazard fatalities are significantly clustered in
the central terai, central mid-hills, and central mid-mountain regions of the country.
Village level results indicate significant clusters in the same regions as well as the
eastern terai, eastern mid-mountains, western mid-hills, and western mid-mountains.
The predominance of high-high clustering denotes that areas with relatively high
numbers of fatalities are located near areas that also exhibit relatively high numbers of
fatalities. These spatial units are ‘mortality hotspots’ in that there is a higher risk of
dying from natural hazards for populations in those spatial units compared to the rest
of the country.

At first glance, the district and village level maps (Figures 3(A) and 3(B)) appear
similar because clustering patterns are primarily in the same regions – the terai, mid-
hills, and mid-mountains. However, the village level map provides alternative insight
because it analyzes a greater number of data points. For example, while the central
region exhibits high-high clustering in both maps, village level analyses are at a finer
resolution and thus portions of many districts identified as high-high are not identified
as mortality hotspots at the village scale. Furthermore, the village map detected that
low-high clustering is not significant in one of the more populated districts of the
central terai, while additional low-high clusters were identified as well as a high-low
cluster in the eastern terai.

3.3. Temporal distribution of natural hazard mortality

Total natural hazard mortality over the study period (1971–2011) is portrayed by month in
Figure 4. July, August, and September contribute most to mortality, accounting for 68.4%
of deaths across the calendar year. These months encompass the monsoon season in
Nepal, which ushers in copious amounts of precipitation and associated landslides and
floods. Similarly, Figure 5 depicts the distribution of mortality across the entire 41-year
study period by natural hazard type, and Figure 6 portrays the same by decade. While
the annual reporting in Figure 5 serves to visually conceal increases in mortality over
time, the decadal snapshots presented in Figure 6 make it apparent that mortality has
increased over the study period. It is important to reiterate that this increase is not necess-
arily due to a real increase in hazard events, but instead increases and/or perturbations in
human-environment interaction coupled with issues of governance, poverty, land use, and
population growth.

ENVIRONMENTAL HAZARDS 171



3.4. Deadliest natural hazards

Data from 1971 to 2011 established that landslides are the greatest single contributor to
natural hazard mortality in Nepal (Table 1). Landslides rank highest among the 13 natural
hazards that caused mortality over the study period, accounting for nearly 42% of all
deaths. Landslides are followed by floods (32.52%), thunderstorms (11.59%), and cold
waves (6.88%). The remaining nine hazards, earthquakes included, account for the remain-
ing 7.1% of deaths.

Figure 3. Cluster analysis of natural hazard mortality at the district (3A) and village (3B) level, 1971–
2011.
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What is particularly noteworthy is that although landslides constitute the deadliest
natural hazard in Nepal, they do not garner a proportional amount of attention from
the government, nonprofits, and media. Conversely, while earthquakes and glacial lake
outburst floods (GLOFs) are often publicized by the media as catastrophic disasters,
they are responsible for fewer deaths compared to more frequent and (often) less cata-
strophic events such as landslides, floods, thunderstorms, cold waves, and even forest
fires. Although the entirety of Nepal is situated in a seismically active region, only two
major earthquakes occurred during the study period, the Chainpur (1980) and Udaypur
(1988) earthquakes. DesInventar mortality data for both earthquakes are conservative
compared to other reports (e.g. EM-DAT and major media outlets), and the dataset does
not currently include the 2015 Gorkha earthquake. It is important to note that the
Gorkha mega-quake lies outside the scope of this study because the event is not included
in the current DesIventar database. Database managers are currently updating the

Figure 4. Total natural hazard mortality by month, 1971–2011.

Figure 5. Annual mortality by natural hazard type, 1971–2011.
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database, but a release date is not yet available. Given this background, not only did earth-
quakes contribute very little to mortality over the study period (only 0.63%), but we argue
that mortalities caused by earthquakes may be underrepresented in the dataset given
conservative estimates and the current absence of the Gorkha mega-quake. However,
just as earthquakes may be underrepresented, Figure 5 shows that a single flood in
1993 may have led to floods being overrepresented. These deaths, which total greater
than 1000, are the result of an extreme cloudburst event that occurred 19–20 July. Further-
more, the DesInventar database does not disaggregate GLOF-related fatalities within their
typology for floods, which receive much attention due to their sudden force, acute
impacts, and links to climate change. A report from the International Centre for Integrated
Mountain Development (ICIMOD, 2011) documents 24 GLOF events in Nepal, with 10
occurring over the study period of 1971–2011. The creation of a GLOF category in the
DesInventar database, whether as an individual category or a subset of floods, would
assist researchers to more accurately identify where particular hazards occur and their
attributable fatalities.

4. Discussion

This research investigated spatial and temporal patterns of natural hazard mortality Nepal,
a country that exhibits multihazard vulnerability while simultaneously confronting issues
of underdevelopment, poor governance, and increased human-environment interaction.
Specifically, we uncovered spatiotemporal patterns of natural hazard mortality in Nepal
and determined which natural hazard contributes most to mortality.

The results of our study revealed first that spatial concentrations of mortality (based on
crude death rates) are concentrated in the mid-mountain and Himalaya regions of Nepal,
which is where relatively few people reside. However, more refined spatial analyses that
control for population were employed. A Global Moran’s I test confirmed positive
spatial autocorrelation with a coefficient of 0.199 (p < .001) at the district level and
0.256 (p < .001) at the village level, which determined that natural hazard mortalities do

Figure 6. Decadal mortality by natural hazard type, 1971–2010.
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in fact cluster in Nepal. Further, a Local Moran’s I test at the district and village level estab-
lished that mortality clusters are not in the areas indicated by crude death rates, but are
instead significantly clustered in the central terai, central mid-hills, and central mid-moun-
tain regions. The Local Moran’s I test also determined the nature of the clusters (e.g. high-
high, high-low, and low-high), while village level permutation went on to detect additional
pockets of fatalities (i.e. in the eastern terai, eastern mid-mountains, western mid-hills, and
western mid-mountains) and did so at a much finer resolution. These findings are impor-
tant because (1) the district and village analyses concur that the central portion of Nepal is
highly vulnerable relative to the rest of Nepal (making the findings more robust); (2) knowl-
edge on the nature or ‘direction’ of spatial clusters provides insight on specific locations
that are both relatively vulnerable and relatively less vulnerable (the former being mor-
tality hotspots and the latter being zones of relatively low mortality); and (3) the finer
scale village analyses identify smaller, more explicit jurisdictions that can be more effec-
tively targeted with financial and human resources to reduce vulnerability.

The clustering of high-high fatality zones, or spatial locations with significantly high
moralities surrounded by other locations with significantly high mortalities, also provides
insights. The clustering of such zones is associated with neither the terai region (i.e. where
half of the population resides and multihazard occurrence is great) nor with indicators of
socioeconomic development (i.e. the lowest scoring districts in the Human Development
Index (HDI) are in the far west and central terai regions (Sharma, Guha-Khasnobis, &
Khanal, 2014), which were not identified as high-high clustered regions). This clustering
pattern is somewhat counterintuitive and thus calls for a more focused, ground-level
investigation of high-high spatial clusters in order to discern how and which social, econ-
omic, and environmental factors are coalescing to govern vulnerability. At any rate, this
finding reinforces that natural disaster mortality and the related concepts of vulnerability
and risk are inherently complex and difficult to understand. Further, it reveals that the vul-
nerability of these populations may be historically overlooked or overshadowed by
regions where more people live, measurements of development are less, or disasters
that strike are larger or strike more frequently.

Next, analyses revealed that landslides constitute the most deadly hazard in Nepal from
1971 to 2011, accounting for nearly 42% of all mortalities. Landslides are followed by
floods, which account for close to 36% of mortalities. In terms of conventional wisdom,
earthquakes – which cause large numbers of mortalities per event – are often perceived
as the deadliest natural hazard in Nepal. However, this study demonstrates that it may
be wise to afford greater attention and resources to landslides and floods, which cause
fewer mortalities per event but are more frequent. Often, communities affected by
small and moderate size natural hazards are underestimated and not considered to the
extent they should be in disaster planning processes (Marulanda et al., 2010; Price,
Byers, Friend, Kohler, & Price, 2013). This only serves to problematize the vulnerability cal-
culus of such populations. We caution that this finding may not hold depending on the
data source, how hazards within a dataset are classified, and the study period. For
example, a longer study period and/or a study period that includes the 2015 Gorkha earth-
quake would alter the findings. Moreover, even if researchers could unequivocally identify
the ‘deadliest hazard,’ it may be more practically and academically productive to deter-
mine where the most cumulatively vulnerable populations reside and to then address
place-based vulnerability from a multihazard perspective. This finding dovetails with the
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argument above that areas with high-high clusters of mortality warrant closer examin-
ation. While data and statistical analyses are able to reveal patterns across space and
time, such patterns must be scrutinized more closely to arrive at nuanced, place-based
rationale as to why they manifest and what should be done.

Finally, temporal analyses evidenced that natural hazard mortality has increased over
time, and this was especially visible in the decadal snapshots. Temporal analyses also dis-
tinguished the months of July, August, and September (i.e. the monsoon season) as the
deadliest months, accounting for 68.4% of natural hazard mortalities across the calendar
year. These findings indicate that (1) the population of Nepal is increasingly vulnerable to
natural hazards (the product of a possible increase in events, amplified human-environ-
ment interactions, social variables, or a complex combination of these and other
factors); (2) outreach, education, and capacity building should emphasize the existence
of enhanced vulnerability during the monsoon season; and (3) regarding structural mitiga-
tion strategies, it may be wise to deploy structural measures that reduce risk to natural
hazards that have a tendency to manifest during the monsoon season.

This study represents an innovative use of the DesInventar database. DesInventar is cur-
rently the most robust, long term database for Nepal that is publicly available. However, a
limitation of the dataset is that some hazard events appear inconsistent in reporting major
flood and earthquake events. For example, the 2008 Koshi flood, 1988 Udaypur earth-
quake, and 1980 Chainpur earthquake are specific events that appear underreported in
terms of mortality. Furthermore, GLOF events are not included in the database although
other reports (see ICIMOD, 2011; Shrestha & Aryal, 2011) indicate that GLOFs and GLOF
fatalities occurred during the study period. That being said, all databases exhibit limit-
ations and the DesInventar dataset was certainly valuable in advancing understandings
of spatiotemporal hazard mortality in Nepal. Further, it represents the best and most com-
prehensive dataset available at this time.

5. Conclusions

A greater understanding of natural hazard fatalities across the geographic domain is
crucial for developing effective disaster management programs and policies. Knowing
where natural hazards are fatal across space and time can assist in the allocation of
scarce resources, selection of mitigation techniques, and delivery of capacity building
and information dissemination campaigns. In this context, we attempted to answer follow-
ing questions: (1) what are the spatiotemporal patterns of natural hazard mortality in
Nepal?; and (2) which natural hazard contributes most to mortality? We used the publicly
available DesInventar database to examine these questions, which first required the
manual georeferencing of all natural hazard events that resulted in mortality from 1971
to 2011. Spatial analyses identified clusters of fatalities across the country, and temporal
analyses revealed that the months that encompass the monsoon season have the
highest impact on mortalities (i.e. more than two-thirds of total fatalities throughout the
calendar year). Furthermore, landslides emerged as the single most deadly hazard over
the study period.

This study is a starting point to better understand the distribution of natural hazard
mortality in Nepal. Spatial-analytical research on mortality in Nepal is nascent. However,
this paper demonstrates that datasets such as DesInventar can be manipulated to
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address this gap by enabling the analysis and visualization of natural hazard mortality
across the dimensions of space and time. These capabilities can in turn be used to identify
clusters of high and low mortality, determine the deadliest hazard in a discrete location or
across a period of time, and ultimately for policymaking and resource allocation. Thus, as
the DesInventar dataset is expanded and spatiotemporal research continues, such
approaches have the potential to refine understandings of mortality in Nepal and foster
the formulation of more effective and geographically targeted disaster policies. In
Nepal, there is a dearth of research on how disaster mortality is distributed across the
country. As a consequence, planners, decision makers, emergency managers, local officers,
and nonprofits are constantly facing challenges to adequately plan and prioritize limited
resources to reduce the risk of individual communities. To that end, this study can be taken
as a starting point to discern and anticipate the spatial clustering and temporal patterning
of natural hazard risk. While this study does not necessarily reach the point of evidence-
based decision-making, strides have been made towards a more informed avenue for
natural hazards management in Nepal.

Researchers engaging in similar future studies may wish to consider the following
potential limitations. First, a longitudinal and comprehensive database that simultaneously
geolocates natural hazard events is currently nonexistent for Nepal. The database used for
the study (i.e. DesInventar) fulfills this gap to some extent. However, some events appear
underreported; the issue of hazards that subsequently trigger additional hazards is difficult
to disentangle (e.g. an earthquake that triggers a landslide); and significant time was
expended to manually geolocate 2839 natural hazard events. The issue of researcher dis-
cretion in terms of geographic and temporal bounds of analysis also exists. Furthermore,
analytical products are highly dependent on the spatial unit of analysis (e.g. regional vs.
district vs. village vs. point based), and the same goes for temporal slices (e.g. study
period vs. decadal vs. seasonal vs. monthly). In this study, we were careful to disclose
these spatial and temporal limitations as results were presented. Finally, this paper is a
beginning foundation and should thus be considered as a starting point towards under-
standing spatiotemporal patterns of mortality in Nepal. Thus, we call for the collection
and sharing of more data that have the ability to advance spatiotemporal natural
hazards research as well as future studies that can advance or refute analyses and con-
clusions presented in this study.
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